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MRL Research Overview {3 MU
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MRL Project Outline { MU

« Nanotechnology

— Video-rate Imaging: Versatile Atomic Force Microscopy Designs

— Nanoscale Inspection: High-precision & High-speed Optical Metrology
* Intelligent Systems

— Intelligent System for Health Monitoring of Physical Machines

— Machine Learning-based Control for Electrical Motors

— Autonomous Agents in Context

— Generalized Bayesian Regression
* Robotics & Automation

— Technologies for Cell Phone Recycling

— Technologies for In-pipe Inspection, Rehabilitation and Energy Harvesting
- Selected Previous Projects
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MRL Project Outline { MU

« Nanotechnology
— Video-rate Imaging: Versatile Atomic Force Microscopy Designs
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Atomic Force Microscope

*; MECHATRONICS RESEARCH LABORATORY

» Atomic Force Microscope (AFM): nanoscale imaging tool for surface characterization

» Key components: cantilever probe, positioner, controller

Topography image taken by AFM [ref]
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Research Objectives

Aspects for 1. High-speed Imaging 2. Native Environment 3. System Automation
Improvement
Development in | High-speed and large-range AFM imaging in opaque Automated experiment Low-cost modular AFM
this work for AFM imaging for dynamic liquid for observation in setup and batch processing design with experiments as
new capabilities | process visualization native environments of multiple AFM images an educational platform
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Primary Subsystmes

1. High-speed, large range or low-cost AFM nano-positioner design | positioner

2. Coated active cantilever probes for harsh opaque liquid operation | cantilever

3. Algorithms for scanner control, automatic tuning and AFM imaging controller

4. High-bandwidth driver and signal processing electronics Driver

5. Optical system for small probes with vision-based automation Optics & Vision E’m.- B
6. Software implementation for high-speed big data processing Software

7. AFM system integration for visualization Integration

I I I I Massachusetts Institute of Technology



Custom AFM Systems at MRL

 Low-cost educational AFM
 Multi-layer stacked scanner AFM
 Versatile sample-scan AFM

Low-cost educational AFM Multi-layer stacked scanner AFM Versatile sample-scan AFM
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Nanoscale Visualization {3 MU

» Dynamic reaction process visualization in real-time
« Chemically harsh opaque liquid environment imaging
« Various applications in physics, chemistry, material science, biology
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Imaging of calcite etching process at 20 FPS with top view and isometric view (4X) Image of a calibration grating in crude oil
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MRL Educational AFM {3 MU
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MRL Project Outline { MU

Nanotechnology

— Nanoscale Inspection: High-precision & High-speed Optical Metrology

11
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.[[l MITMECHE M:Lm

Open House 2021 A AW

High-precision & High-speed Optical Metrology

Tterative design
Smart calibration
Global optimization

odel recognitio”
el adjustme™t

Model validation
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NI s il {§ ML

Technology

Nanoscale Inspection: High-precision & High-speed Optical Metrology

Open House 2021

Iterative design
Smart calibration
Global optimization
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MRL Project Outline { MU

Intelligent Systems
— Intelligent System for Health Monitoring of Physical Machines

14
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Multi-disciplinary Research Topics

« Mechatronics

— Modeling, instrumentation, and smart utility

— Real-time control system development deployment

— Multi-modal sensor network design and interpretation

— RL-based robotic predictive maintenance

» Machine Learning
— Plant modeling and physics-informed learning
— Transfer learning and zero-shot learning

— Multi-modal sensor fusion and learning

Rotation
Shaft
Plant

Rotation
Shaft

Axial
Anomaly
Generator
Radial
Anomaly
Generator

Wireless
Sensor
Package
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Radio-Frequency Sensing I MIL

Goal: Perform ongoing monitoring of machine health status through non-contact sensing
of vibration and other anomalous behavior using radio-frequency instrumentation design.

Target Machinery: injection molding Method: radio frequency sensing
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MRL Project Outline { MU

* Intelligent Systems

— Machine Learning-based Control for Electrical Motors

17

I I I I Massachusetts Institute of Technology



Sponsor Background MU

* Weichail Group — industry leader
In engines, heavy machinery, bus
and truck manufacturing

HESHR T BN

* Industry 4.0 - Increasing need for
Intelligent systems

e Electrical Motors — Useful in
electrical buses, trucks and
Industrial robots
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Why Machine Learning ?

» Existing control strategies: Vector Control
(VC), Direct Torque Control (DTC)

e |ssues:

— Quality of calibrations of controller
parameters depends on operator experience

— Motor parameter accuracy affects robustness
of control system

— Response speed and accuracy unsatisfactory
In certain applications

19
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Proposed Control Architecture {F MR

Machine Learning based Multi-Level Control

Multimode sensor signals

Decision making and

20
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Control Strategies ML

« Baseline Control:

— Active Disturbance Rejection Based Control: estimate disturbances as
an augmented state

— Time-Delay Control: estimate disturbances at t as the disturbances at t-a

* Learning and Prediction: i |

h > ,
— Feedforward Neural Networks o [ii =Fe | L Ul o pan 2

— Reinforcement Learning 765 | [0

21

I I I I Massachusetts Institute of Technology



Experimental Setup Schematic I MIL

Disturbance | Mimic Friction, Load and
generator temperature impacts
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MRL Project Outline { MU

« Nanotechnology

* Intelligent Systems

— Autonomous Agents in Context

23
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Autonomous agents

Sensing:
Sensor selection; | Clear view

Sensor placement;
Sensor fusion.

Scene Understanding:
3D reconstruction
Semantic segmentation
Identification and tracking

Unn:le1':5tam:1:ing_>

and prediction

Navigation:
Safe, efficient, robust
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Sensing

*; CS RESEARCH LABORATORY

MEGHATRONI

Sensing methods Characteristics Resolution  Cost Other advantages Other disadvantages
Camera Passive, 2D imaging RGB High Low High sampling rate Light and weather sensitive
Stereo Camera Passive, 3D imaging RGB-D High Low High sampling rate Light and weather sensitive
High sampling rate, Lo
Radar Active Low High light and weather insensitive, . W accuracy, .
hi : lacking of semantic information
igh penetration
LiDAR Active, 3D scan Hish  High High sampling rate, Weather sensitive
light insensitive
Ultrasonic Active, 1D scan Low Low  light and weather insensitive Low range,
low sampling rate

MEDIUM RANGE
RADAR

Biind Side Detection

RADAR and the Autonomous Vehicle

ssssssss

LONG RANGE
RADAR
Adaptive Cruise Control
Automalic Emergency Braking
Forward Colison Waming
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Scene understanding {3 ML
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Le, Quang H., Kamal Youcef-Toumi, Dzmitry Tsetserukou, and Ali Jahanian. "Instance Semantic Segmentation Benefits from Generative Adversarial Networks." In NeurlPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.



Last mile delivery and logistics MU

Biggest challenges for logistics providers in last mile delivery in the United States in
2020

None ofthese 13%

- Other 1%

» Not enough workers 23% . .
9 - Increasing delivery costs 54%

Lack of warehouse workers 25%

« Reliable order fulfillment 25%

Sources Additional Information:
ates; Bloomberg:; BlueYonder; MSN United States; Statista estimates; BlueYonder; October 6 to 13, 2020; 300 respondents; ser
1 based firms.: Online survey
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Autonomous mobile robots {3 MU

Research focus:

- Motion planning in pedestrian rich “" :
environments P N giseh
- Human intent prediction :_O~ :
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MRL Project Outline { MU

Intelligent Systems

— Generalized Bayesian Regression

29
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Generalized Bayesian Regression {3 MRL

@ Standard Bayesian regression methods assume that the target
variables (in fact, the residuals of the model) are normally distributed.

@ That is, they assume a Gaussian uncertainty on the y-values (infinite
tail distribution).

@ However, this may not be the type of uncertainty that we have.

@ For example, assume that the output values are bounded between two
values (truncated tail distribution).

I
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Generalized Bayesian Regression {3 MRL
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o Left) Gaussian targets assumption: Bayesian regression finds a linear
model that sits in low probability regions of the data.

e Right) Uniform targets assumption: Bayesian regression cannot find
a linear model since no linear model can pass through each data

distribution (i.e. interval) simultaneously.

Can we devise a generalized Bayesian regression approach that is
able to find a model under any target distribution assumption?

31
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Generalized Bayesian Regression
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Probability density

Standard Bayesian Regression

Z =0 — Fails! (

Probability density

Generalized Bayesian Regression

Z(B) # 0 — Works! :)

I
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MRL Project Outline { MU

Robotics & Automation
— Technologies for Cell Phone Recycling

33
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Some Numbers on E-Waste

* Globally, we produce millions of metric tons per year

e Current solution: melt it!

— Out of 1 million cellphones
» 16,000kg of copper
 350kg of silver
» 34kg of gold
» 15kg of Palladium

— After all, only 20% recycled

World Totals

Metric Tons
- N W A~ U o
o O O O O O O

Global e-waste generated

E-waste totals

44.7

2014 2015 2016 2017 2018 2019 2020 2021
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Objectives {F MR

« Augment the robotic system with vision for making
the system autonomous

» See cellphone components Vision
I

 Learn how to see and parse cellphone components It

— generalize seeing for parsing Decision-Making |

] o m— - - - - oo —p z;stztrlg — Disassembly
» Serve as both input and feedback for decision- Control System
making system
: Schematic view of the robotic system when vision and
— Measure Components and thelr Clearances decision-making subsystems are incorporated.

— Did the robotic system accomplish the task
successfully?

36
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Demo of Robotic Disassembly {3 MRL

Vision
|

v

Decision-

Making ;
Robotic .

* ________ » System * Disassembly

Control

System

Schematic view of the robotic system when vision and
decision-making subsystems are incorporated.

.
»
»
’
»
»
»
»
»
»
»
»
»
»
»
»
»
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Problem/Challenges MU

Small components and micron-scale gaps between them

Limited pose (and thus limited viewpoints), difficult to capture

— RGB-D or point clouds with an effective precision

— Unless using several-thousand-dollar high-end 3D scanner

The amount of data is limited due to the specificity

— Design from each manufacturer

— Occlusion

How to do it for automation and robotics usage in
manufacturing?

38
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Computer Vision Method {FMRIL

* We designed a deep learning neural network with a “learnable” objective

GANs (Generative Adversarial Network) Loss

Input image

arg min
& G

— box
— class
GOOD!
_— —
mask r r BAD!

Output image

@Ex,y[log D(G(x))+log(1 — D(y))]

I I I I Massachusetts Institute of Technology
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Cellphone Object Recognition

Cellphone recycling

Our method

baseline Mask R-CNN

40
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MRL Project Outline { MU

e Robotics & Automation

— Technologies for In-pipe Inspection, Rehabilitation and Energy Harvesting

41
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A Severe Problem — Water Leakage MU

rl

VA AR AA

6.3 times of annual Massachusetts water consumption

457 feet

H
[ 42
I I I I Massachusetts Institute of Technology 1 he Case for Fixing the Leaks: Protecting people and saving water while supporting economic growth in
the Great Lakes region. CNT, 2013






Magnetohydrodynamics Energy Harvester #3}MR3L
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Sensors to ldentify Leaks and Map Pipes {3MRL

* Design a soft sensor that can measure and
decouple all four deformation modes

Undeformed

(b) Bending. y-axis

« Determine how leaks and obstacles affect
the sensor readings

- Validate the sensor in a water pipe

 Use sensor data to improve in-pipe
localization

(c) Compressive Pressure, z-axis (d) Torsion, x-axis

45
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Multiple Robots. Multiple Robots.

I
L 46
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MRL Project Outline { MU

Selected Previous Projects

47
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Project Videos {3 ML

» Mechanical design and manufacturing

* Robot Collision Avoidance
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Potential Openings MU

» Contact for potential openings

— Point of contact: Steven Yip Fun Yeung yyeung@mit.edu

— Lab assistant: Barbra Williams barbraw@mit.edu

— Prof. Kamal Youcef-Toumi youcef@mit.edu

Thank youl!

Q&A
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