The tenured engineers of 2019



The School of Engineering has announced that 17 members of its faculty have been granted tenure by MIT.

“The tenured faculty in this year’s cohort are a true inspiration,” said Anantha Chandrakasan, dean of the School of Engineering. “They have shown exceptional dedication to research and teaching, and their innovative work has greatly advanced their fields.”

This year’s newly tenured associate professors are:

Antoine Allanore, in the Department of Materials Science and Engineering, develops more sustainable technologies and strategies for mining, metal extraction, and manufacturing, including novel methods of fertilizer production.

Saurabh Amin, in the Department of Civil and Environmental Engineering, focuses on the design and implementation of network inspection and control algorithms for improving the resilience of large-scale critical infrastructures, such as transportation systems and water and energy distribution networks, against cyber-physical security attacks and natural events.

Emilio Baglietto, in the Department of Nuclear Science and Engineering, uses computational modeling to characterize and predict the underlying heat-transfer processes in nuclear reactors, including turbulence modeling, unsteady flow phenomena, multiphase flow, and boiling.

Paul Blainey, the Karl Van Tassel (1925) Career Development Professor in the Department of Biological Engineering, integrates microfluidic, optical, and molecular tools for application in biology and medicine across a range of scales.

Kerri Cahoy, the Rockwell International Career Development Professor in the Department of Aeronautics and Astronautics, develops nanosatellites that demonstrate weather sensing using microwave radiometers and GPS radio occultation receivers, high data-rate laser communications with precision time transfer, and active optical imaging systems using MEMS deformable mirrors for exoplanet exploration applications. 

Juejun Hu, in the Department of Materials Science and Engineering, focuses on novel materials and devices to exploit interactions of light with matter, with applications in on-chip sensing and spectroscopy, flexible and polymer photonics, and optics for solar energy.

Sertac Karaman, the Class of 1948 Career Development Professor in the Department of Aeronautics and Astronautics, studies robotics, control theory, and the application of probability theory, stochastic processes, and optimization for cyber-physical systems such as driverless cars and drones.

R. Scott Kemp, the Class of 1943 Career Development Professor in the Department of Nuclear Science and Engineering, combines physics, politics, and history to identify options for addressing nuclear weapons and energy. He investigates technical threats to nuclear-deterrence stability and the information theory of treaty verification; he is also developing technical tools for reconstructing the histories of secret nuclear-weapon programs.

Aleksander Mądry, in the Department of Electrical Engineering and Computer Science, investigates topics ranging from developing new algorithms using continuous optimization, to combining theoretical and empirical insights, to building a more principled and thorough understanding of key machine learning tools. A major theme of his research is rethinking machine learning from the perspective of security and robustness.

Frances Ross, the Ellen Swallow Richards Professor in the Department of Materials Science and Engineering, performs research on nanostructures using transmission electron microscopes that allow researchers to see, in real-time, how structures form and develop in response to changes in temperature, environment, and other variables. Understanding crystal growth at the nanoscale is helpful in creating precisely controlled materials for applications in microelectronics and energy conversion and storage.

Daniel Sanchez, in the Department of Electrical Engineering and Computer Science, works on computer architecture and computer systems, with an emphasis on large-scale multi-core processors, scalable and efficient memory hierarchies, architectures with quality-of-service guarantees, and scalable runtimes and schedulers.

Themistoklis Sapsis, the Doherty Career Development Professor in the Department of Mechanical Engineering, develops analytical, computational, and data-driven methods for the probabilistic prediction and quantification of extreme events in high-dimensional nonlinear systems such as turbulent fluid flows and nonlinear mechanical systems.

Julie Shah, the Boeing Career Development Professor in the Department of Aeronautics and Astronautics, develops innovative computational models and algorithms expanding the use of human cognitive models for artificial intelligence. Her research has produced novel forms of human-machine teaming in manufacturing assembly lines, healthcare applications, transportation, and defense.

Hadley Sikes, the Esther and Harold E. Edgerton Career Development Professor in the Department of Chemical Engineering, employs biomolecular engineering and knowledge of reaction networks to detect epigenetic modifications that can guide cancer treatment, induce oxidant-specific perturbations in tumors for therapeutic benefit, and improve signaling reactions and assay formats used in medical diagnostics.

William Tisdale, the ARCO Career Development Professor in the Department of Chemical Engineering, works on energy transport in nanomaterials, nonlinear spectroscopy, and spectroscopic imaging to better understand and control the mechanisms by which excitons, free charges, heat, and reactive chemical species are converted to more useful forms of energy, and on leveraging this understanding to guide materials design and process optimization.

Virginia Vassilevska Williams, the Steven and Renee Finn Career Development Professor in the Department of Electrical Engineering and Computer Science, applies combinatorial and graph theoretic tools to develop efficient algorithms for matrix multiplication, shortest paths, and a variety of other fundamental problems. Her recent research is centered on proving tight relationships between seemingly different computational problems. She is also interested in computational social choice issues, such as making elections computationally resistant to manipulation.

Amos Winter, the Tata Career Development Professor in the Department of Mechanical Engineering, focuses on connections between mechanical design theory and user-centered product design to create simple, elegant technological solutions for applications in medical devices, water purification, agriculture, automotive, and other technologies used in highly constrained environments.