Skip to content

MechE Resources | MechE Subjects | MIT Home

Hermano Igo Krebs

Hermano Igo Krebs

Principal Research Scientist

Room 3-137
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139-4307
Phone: 617-253-8112  
Email:
Web: http://newmanlab.mit.edu/#The Newman Lab

Research Interests
Robotics, Neuro-Rehabilitation, and Human-Machine Interactions.

 

Current Research
Underlying my research is one overarching goal: to revolutionize the practice of rehabilitation medicine by applying robotics and information technology that can assist, enhance, and quantify rehabilitation -- particularly neuro-rehabilitation. Unlike the efforts of predecessors who used robotics as an assistive technology for the disabled, my approach uses robots and computers to support and enhance the clinicians' productivity as they facilitate a disabled individual's functional recovery. The embodiment of this goal is a new class of interactive, user-affectionate clinical devices designed not only for evaluating patients, but also for delivering meaningful therapy via engaging "video games." The science is the understanding of the neuro-muscular, motor learning, and neuro-recovery processes. The engineering is the design and control of human-machine interfaces in general, and robot-aids for different limbs and body segments in particular. On the crossroad between science and engineering is the patients' movement analysis. At first blush this might seem unduly ambitious; a "technology push" rather than a "market pull." Yet as with other archaic industries, the rehabilitation field is ripe for a change. Robotics and information technology can provide an overdue transformation of rehabilitation clinics from primitive manual operations to more technology-rich operations. Robot-aids not only are more efficient in delivering certain routine physical and occupational therapy activities, but also provide a rich stream of data that assists in patient diagnosis, customization of the therapy, and maintenance of patient records (at the clinic and at home). Our research group pioneered the use of robots in three distinct areas, and since then has energetically promoted the concept (for more detail check "The Eric P. and Evelyn E. Newman Laboratory for Biomechanics and Human Rehabilitation" homepage):

 

Education
Escola Politecnica da Universidade de Sao Paulo, Brazil -- BS Naval Engineering, 1980
Escola Politecnica da Universidade de Sao Paulo, Brazil -- MS Naval Engineering, 1987
Yokohama National University, Japan -- MS Ocean Engineering, 1989
Massachusetts Institute of Technology -- PhD Engineering, 1997

 

Professional Experience 
1977-1978  Teacher, Escola Técnica Federal de São Paulo, Brazil
1978-1979 Research Assistant, Escola Politécnica da Universidade de São Paulo, Brazil
1980-1986 Surveyor, ABS - American Bureau of Shipping, São Paulo Office, Brazil
1989 Visiting Researcher – Sumitomo Heavy Industry – Hiratsuka Laboratory, Hiratsuka, Japan
1993-1996 Engineer, Casper, Phillips, & Associates, Tacoma, WA
1989-1996 Research Assistant - Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
1997 Post-Doctoral Associate, MIT, Cambridge, Massachusetts
1997-2001 Research Scientist, MIT, Cambridge, Massachusetts
1999-present Lecturer, MIT, Cambridge, Massachusetts
2002-2007  Adjunct Assistant Research Professor of Neuroscience -- The Burke Medical Research Institute -- Weill Medical College of Cornell University

2008-2010  Adjunct Professor of Neuroscience -- The Burke Medical Research Institute -- Weill Medical College of Cornell University
2002-present Principal Research Scientist, Newman Laboratory for Biomechanics and Human Rehabilitation, Massachusetts Institute of Technology, Cambridge, Massachusetts

2006-present  Adjunct Professor – University of Maryland School of Medicine, Department of Neurology and Division of Rehabilitative Medicine 

2013-2014 Visiting Professor - Fujita Health University, School of Medicine

 

Patents 

1. Patent in Japan, Utility Model Patent 102599/89,  “Shelfship and Shelftainer”, Hermano Igo Krebs, sole inventor, in association with Sumitomo Heavy Industry of the Shelfship -Shelftainer.

2. Patent Number 5,466,213 “Interactive Robotic Therapist”, Neville Hogan, Hermano Igo Krebs, Andre Sharon and Jain Charnnarong. issued November 14, 1995.

3. Patent Number 5,794,621 “System and Method for Medical Imaging Utilizing a Robotic Device, and Robotic Device for Use in Medical Imaging”, Neville Hogan, Hermano Igo Krebs, August 18, 1998. 

4. Patent Number 7,556,606 “Pelvis Interface – Mobile Pelvis Manipulator or System and Method for Rehabilitation of Gait and Balance Utilizing Automation Technology and Robotic Devices,” Hermano Igo Krebs, Neville Hogan, Michael Roberts, July 2009.

5. Patent Number 7,618,381 “Wrist And Upper Extremity Motion,” Hermano Igo Krebs, Neville Hogan, Dustin Williams, James Celestino, Patent No. 7,618,381, November 2009.

6. Patent Number 8,608,674B2 “Pelvis Interface,” Krebs, Hogan, Roberts, December 2013. 

7. Patent Granted, “System and Method for Training Gait of Neurologically Impaired Patients via Gravity Augmentation,” Bosecker and Krebs – Patent Application 13/191,105, Allowed September 2013.                                                                                   

8. Patent Granted, “Dynamic Lower Limb Rehabilitation Robotic Apparatus and Method of Rehabilitating Human Gait,” Bosecker and Krebs – Patent Application 12/762,282, Allowed October 2013. 

9. Pending “Testing Therapy Efficacy with Extremity and/or Joint Attachments,” Hogan, Volpe, Krebs.

10. Pending “Ankle Interface – Robotic Device for Ankle Rehabilitation,”Krebs, Hogan, Williams, Wheeler.

11. Pending “Converting Rotational Motion into Radial Motion” Krebs and Masia.

 

Awards

2009 Isabelle and Leonard H. Goldenson Technology and Rehabilitation Award (Cerebral Palsy International Research Foundation).

IEEE Fellow (Class 2014) -- IEEE citation: "for contributions to rehabilitation robotics and the understanding of neuro-rehabilitation." Nominated by IEEE-EMBS (Engineering in Medicine & Biology Society) and IEEE-RAS (Robotics and Automation Society)

 

Selected Papers (from over 180) 
1. Aisen, M.L.; Krebs, H.I.; McDowell, F.; Hogan, N.; Volpe, B.T.; "The Effect of Robot Assisted Therapy and Rehabilitative Training on Motor Recovery Following a Stroke"; Arch of Neurol; 54:443-446, 1997.
2. Krebs, H.I.; Brashers-Krug, T.; Rauch, S.L.; Savage, C.R.; Hogan, N.; Rubin, R.H.; Fischman, A.J.; Alpert, N.M.; “Robot-Aided Functional Imaging: Application to a Motor Learning Study”, Human Brain Mapping; 6:59-72; 1998.
3. Krebs, H.I.; Hogan, N.; Aisen, M.L.; Volpe, B.T.; “Robot-Aided Neuro-Rehabilitation”, IEEE – Transactions on Rehabilitation Engineering, 6:1:75-87; 1998. 
4. Krebs, H.I.; Hogan, N.; Aisen, M.L.; Volpe, B.T.; “Quantization of Continuous Arm Movements in Humans with Brain Injury”, Proc. Nat. Acad. of Science 96:4645-4649, 1999.
5. Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, L., Diels, C.M., Aisen, M.; “A Novel Approach to Stroke Rehabilitation: Robot Aided Sensorymotor Stimulation”, Neurology, 54:1938-1944, 2000.
6. Krebs, H.I., Volpe, B.T., Aisen, M.L., Hogan, N.; “Increasing Productivity and Quality of Care: Robot-Aided Neurorehabilitation”, VA Journal of Rehabil Res and Dev, 37:6:639-652, 2000.
7. Krebs, H.I., Hogan, N., Hening, W., Adamovich, S., Poizner, H.; “Procedural Motor Learning in Parkinson’s Disease”; Exp. Brain Res. 141:425-437 (2001).
8. Volpe, B.T., Krebs, H.I., Hogan, N.; Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? , Current Opinion in Neurology, 14:745-52(2001).
9. Rohrer, B., Fasoli, S., Krebs, H.I., Hughes, R., Volpe, B. Frontera, W.R., Stein, J., Hogan, N., “Movement Smoothness Changes during Stroke Recovery”, J. Neurosci, 22:18: 8297-8304 (2002).
10. Krebs, H.I., Palazzolo, J.J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., Volpe, B.T., Hogan, N., Rehabilitation Robotics: Performance-based Progressive Robot-Assisted Therapy, Autonomous Robots, 15:7-20 (2003).
11. Ferraro, M.; Palazzolo, J.J.; Krol, J.; Krebs, H.I.; Hogan, N.; Volpe, B.T.; Robot Aided Sensorimotor Arm Training Improves Outcome in Patients with Chronic Stroke, Neurology, 61:1604-1607 (2003).
12. Fasoli, SE, Krebs, HI, Stein, J, Frontera, WR, Hughes R, and Hogan, N, Robotic Therapy for Chronic Motor Impairments after Stroke: Follow-Up Results, ArchPhysMedRehab; 85:1106-1111 (2004).
13. Fasoli, S.E., Krebs, H.I., Ferraro, M., Hogan, N., and Volpe, B.T., Does Shorter Rehabilitation Limit Potential Recovery Poststroke? Neurorehabilitation & Neural Repair, 18:2:88-94 (2004).
14. Stein, J., Krebs, H.I., Frontera, W.R., Fasoli, S.E., Hughes, R., Hogan, N., “Comparison of Two Techniques of Robot-Aided Upper Limb Exercise Training After Stroke,” American Journal Physical Medicine Rehabilitation, 83:9:720-728 (2004).
15. Dipietro, L., Ferraro, M., Palazzolo, J.J., Krebs, H.I., Volpe, B.T., Hogan, N., “Customized Interactive Robotic Treatment for Stroke: EMG-Triggered Therapy,” IEEE Transaction Neural Systems and Rehabilitation Engineering, 13:3:325-334 (2005).
16. Hogan, N., Krebs, H.I., Rohrer, B., Palazzolo, J.J., Dipietro, L., Fasoli, S.E., Stein, J., Frontera, W.R., Volpe, B.T., “Motions or Muscles? Some Behavioral Factors Underlying Robotic Assistance of Motor Recovery,” VA Journal of Rehabilitation Research and Development, 43(5)605-618 (2006).
17. Carignan, C.R., Krebs, H. I. “Telerehabilitation Robotics: Bright Lights, Big Future?”; VA Journal of Rehabilitation Research and Development, 43(5)695-710 (2006).
18. Krebs, H.I., Hogan, N., “Therapeutic Robotics: A Technology Push,” Proceedings of IEEE, 94(9)1727-1738 (2006).
19. Palazzolo, J.J., Ferraro, M., Krebs, H.I., Lynch, D., Volpe, B.T., Hogan, N., “Stochastic Estimation of Arm Mechanical Impedance during Robotic Stroke Rehabilitation,” IEEE Transaction Neural Systems and Rehabilitation Engineering, 15(1)94-103 (2007).
20. Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N. “Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation,” IEEE Transaction Neural Systems and Rehabilitation Engineering 15(3)327-335 (2007).
21. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N: “Changing motor synergies in chronic stroke,” J. Neurophysiology; 98:757-768 (2007).
22. Masia, L, Krebs, HI, Cappa, P, Hogan, N. “"Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke," IEEE/ASME Trans on Mechatronics 12:4:399-407 (2007).
23. Krebs, HI, Mernoff, S, Fasoli SE, Hughes, R, Stein, J, Hogan, N, A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: A pilot study “ NeuroRehabilitation 23(1): 81-87 (2008).
24. Dipietro, L., Krebs, HI, Fasoli, SE, Volpe, BT, Hogan, “Submovement changes characterize generalization of motor recovery after stroke,” Cortex (2008).
25. Kwakkel, G., Kollen, B.J., Krebs, H.I., “Effects of Robot-assisted therapy on upper limb recovery after stroke: A Systematic Review,” Neurorehabilitation and Neural Repair, 22:2:111-121 (2008).
26.  Volpe BT, Lynch D, Ferraro M, Galgano, M, Hogan N, Krebs HI. “Intensive sensorimotor arm training improves hemiparesis in patients with chronic stroke.” Neurorehab Neu Repair, 22:3:305-310 (2008).
27. Fasoli, S.E., Fragala-Pinkham, M., Hughes, R., Hogan, N., Krebs, H.I., Stein, J., “Upper Limb Robotic Therapy for Children with Hemiplegia,” American Journal of Rehabilitation 87:11:929-936 (2008).
28. Krebs, Dipietro, Levy-Tzedek, Fasoli, Rykman, Zipse, Fawcett,J, Stein,J, Poizner,H, Lo, A, Volpe,B, Hogan, “A Paradigm Shift: Therapeutic Robotics,” IEEE-EMBS Magazine, 27:4:61-70 (2008).
29. Krebs, H.I., Volpe, B.T. and Hogan, N. “A working model of stroke recovery from rehabilitation robotics practitioners,” Journal of NeuroEngineering and Rehabilitation, 6:6 (2009).
30. Roy, A., Krebs, H.I., Williams, D., Bever, C.T., Forrester, L.W., Macko, R.M., Hogan, N., “Robot-Aided Neurorehabilitation: A Robot for Ankle Rehabilitation,” IEEE – Transaction Robotics, 25:3:569-582 (2009).
31. Lonini, L., Dipietro, L., Zollo, L., Guglielmelli, E., Krebs, H. I., “An Internal Model for Acquisition and Retention of Motor Learning during Arm Reaching,” Neural Computation, 21:7:2009-2027 (2009).
32. Edwards DJ, Krebs HI, Rykman-Berland A, Zipse J, Thickbroom GW, Mastaglia FL, Pascual-Leone A, Volpe, B , “Raised Corticomotor Excitability of M1 Forearm Area Following Anodal tDCS is Sustained During Robotic Wrist Therapy in Chronic Stroke,” Restorative Neurology Neuroscience, 27:199-207 (2009).
33. Volpe, B.T., Huerta, P.T., Zipse, J., Rykman, A., Edwards, D., Dipietro, L., Hogan, N., Krebs, H.I., “Robotic Devices as Therapeutic and Diagnostic Tools for Stroke Recovery,” Arch Neurol, 66(9)1086-1090 (2009).
34. Krebs, H.I., Landenheim, B., Hippolyte, C., Monterroso, L., Mast, J., “Robot-Assisted Task Specific Training,” Journal of Developmental Medicine & Child Neurology 51:S4:140-145 (2009).
35. Bosecker, C., Dipietro, L., Volpe, B., Krebs, H.I., “Kinematic Robot-Based Evaluation Scales and Clinical Counterparts to Measure Upper Limb Motor Performance in Patients with Chronic Stroke,” Neurorehabilitation and Neural Repair 24:62-69 (2010).
36. Lo A, Guarino P D, Richards L.G., Haselkorn J.K., Wittenberg, G.F. Federman, D.G., Ringer R.J., Wagner T.H., Krebs H.I., Volpe B.T., Bever C.T., Bravata D.M., Duncan P. W., Corn B.H., Malffucci A.D., Nadeua S.E., Conroy S.S., Powell J.M., Huang G.D., Peduzzi P. “Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke.” The New England Journal of Medicine; 362:1772-1783; 2010.
37. Levy-Tzedek, S., Krebs, H.I., Song, D., Hogan, N., Poizner, H. “Non-Monotonicity on a Spatio-Temporally Defined Cyclic Task: Evidence of Two Movement Types?” Exp Brain Res, 202:4:733-746; 2010.
38. Forrester, L.W., Roy, A., Krebs, H.I., Macko, R.M., “Ankle Training with a Robotic Device Improves Gait after a Stroke.” Neurorehabilitation and Neural Repair; 25:4:369-377; 2011.
39. Roy A, Krebs HI, Bever CT, Forrester LW, Macko RF, Hogan N, “Measurement of Passive Ankle Stiffness in Subjects with Chronic Hemiparesis Using a Novel Ankle Robot,” J.Neurophys; 105:2132-2149, 2011.
40. Lee H, Ho P, Rastgaar MA, Krebs HI, Hogan N., “Multivariable static ankle mechanical impedance with relaxed muscles,” Journal of Biomechanics; 44:1901–1908 (2011).
41. Conroy S S, Whitall J, Dipietro L, Jones-Lush L M, Zhan M, Finley M A, Wittenberg G F, Krebs H I, Bever CT., “The Effect of Gravity on Robot-Assisted Motor Training after Chronic Stroke: A Randomized Trial,” Arch Phys Med Rehab; 92:1754-1761 (2011).
42. Wagner T H, Lo A C, Peduzzi P, Bravata D M, Huang G D, Krebs HI, Ringer R J, Federman D G, Richards L G, Haselkorn J K, Wittenberg G F, Volpe BT, Bever C T, Duncan P W, Siroka A, Guarino PD. “An Economic Analysis of Robot-assisted Therapy for Long-Term Upper-Limb Impairment after Stroke,” Stroke; 42:2630-2632 and supplement 1-17 (2011).
43. Krebs HI, Fasoli SE, Dipietro L, Fragala-Pinkham M, Hughes R, Stein J, Hogan N, “Motor Learning Characterizes Habilitation of Children with Hemiplegic Cerebral Palsy,” Neurorehabilitation and Neural Repair 26:7:855-860 (2012).
44. Dipietro L, Krebs HI, Volpe BT, Stein J, Bever C, Mernoff ST, Fasoli SE, Hogan N, “Learning, Not Adaptation, Characterizes Stroke Motor Recovery: Evidence from Kinematic Changes Induced by Robot-Assisted Therapy in Trained and Untrained Task in the Same Workspace,” IEEE Trans Neural Sys and Rehab Eng 20:1:48-57 (2012).
45. Kim SJ, Krebs HI, “Effects of implicit visual feedback distortion on human gait,” Experimental Brain Research 218:495-502 (2012).

46. Formica D, Charles SK, Zollo L, Guglielmelli E, Hogan N, Krebs HI, “The Passive Stiffness of Wrist and Forearm,” J Neurophysiology, 108:1158-1166 (2012).

47. Chang PH, Park K, Kang SH, Krebs HI, Hogan N, “An Experimental Stochastic Estimation of Human Arm Impedance with Robots Having Nonlinear Frictions,” IEEE Trans on Mechatronics, 18:2: 775 – 786 (2012).

48. Krebs HI, Hogan N, “Robotic Therapy: The Tipping Point,” Am J Phys Med Rehab, 91:11:S290-297 (2012).

49. Roy A, Forrester L W, Macko R F, Krebs HI, “Changes in Passive Ankle Stiffness and its Effects on Gait Function in Chronic Stroke Survivors,” VA J Rehab Res Dev, 50:4:555-572 (2013).

50. Vaisman L, Dipietro L, Krebs HI. “A Comparative Analysis of Speed Profile Models for Wrist Pointing Movements,” IEEE Trans Neural Sys and Rehab Eng, 21:5:756-766 (2013).

51. Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeierati G, Fregni F, Dipietro L, Thickbroom GW, Edwards DJ, “Transcranial Direct Current Stimulation (tdcs) and Robotic Practice in Chronic Stroke: the Dimension of Timing,” NeuroRehabilitation 33:49-56 (2013).

52. Cortes M, Elder J, Rykman A, Murray L, Avedissian M, Stampas A, Thickbroom GW, Pascual-Leone A, Krebs HI, Valls-Sole J, Edwards DJ, “Improved motor performance in chronic spinal cord injury following upper-limb robotic training,”  NeuroRehabilitation 33:57-65 (2013).

53. Lee H, Ho P, Rastgaar MA,  Krebs HI, Hogan N, “Multivariable Static Ankle Mechanical Impedance with Active Muscles,” IEEE- TNSRE (EPUB ahead of publicationi).

54. Michmizos K, Krebs HI. “Pointing with the Ankle: the Speed-Accuracy Tradeoff,” Experimental Brain Research (EPUB ahead of publication)

55. Forrester LW, Roy A, Krywonis A, Kehs G, Krebs HI, Macko R; “Modular Ankle Robotics Training in Early Sub-Acute Stroke: A Randomized Controlled Pilot Study,” Neurorehab Neu Repair (EPUB ahead of publication).

56. Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT. “Robotic Measurement of Arm Movements After Stroke Establishes Biomarkers of Motor Recovery,” Stroke (EPUB ahead of publication).

 

 

 

 

 

 

back to top

MITMassachusetts Institute of Technology Department of Mechanical Engineering, 77 Massachusetts Avenue, Room 3-173, Cambridge MA 02139